Диастолический объем

Aзбука Эхокардиографии в схемах и таблицах

Диастолический объем

Клиническая эхокардиография — метод, который прочно занял одно из ведущих мест в диагностике сердечно-сосудистых заболеваний. Высокая информативность, неинвазивность и безопасность для пациента и исследователя — качества, способствующие его широкому распространению на всех этапах оказания кардиологической помощи.

Следует помнить: стандартные позиции — это не стандартные положения ультразвукового датчика, а стандартные изображения структур сердца, полученные на экране.

Парастернальные позиции

парастернальная длинная ось

длинная ось правых отделов

парастернальные короткие оси

— на уровне створок митрального клапана

— на уровне папиллярных мышц

— на уровне створок аортального клапана

Апикальные позиции

четырехкамерная

двухкамерная

длинная ось левого желудочка с выносящим трактом

Супрастернальные позиции

длинная ось дуги аорты

короткая ось дуги аорты

позиции для визуализации сосудистого пучка

Субкостальные позиции

четырехкамерная

двухкамерная через предсердия

длинная ось верхней полой вены

нижняя полая вена и брюшная аорта (длинная и короткая оси)

Позиции, пригодные для основных измерений в двухмерном (В) и одномерном (М) режимах, подчеркнуты.

ПоказательЗначениеЕд.
1КСР2.2 — 4.0см
2КДР3.5 — 5.5см
3МЖП в систолу1.0 — 1.5см
4МЖП в диастолу0.6 — 1.1см
5Толщина Задней стенки ЛЖ в систолу1.0 — 1.6см
6Толщина Задней стенки ЛЖ в диастолу0.8 — 1.1см
7Амплитуда движения Задней стенки ЛЖ0.8 — 1.5см
8Амплитуда движения МЖП0.5 — 1.1см
9Скорость сокращения Задней стенки ЛЖ3.0 — 5.5см/сек
10Скорость расслабления Задней стенки ЛЖ6.0 — 12.0см/сек
11Период изгнания0.18 — 0.5см
12Экскурсия митрального клапана1.9 — 2.5см
13Скорость диастолического прикрытия митрального клапана10.0 -14.0см/сек
14Диаметр аорты1.8 — 3.5см
15Диаметр левого предсердия1.8 — 3.5см
16Систолическое расхождение АК1.6 — 2.2см
17КСО26.0 — 69.0см3
18КДО50.0 -147.0см3
19Ударный объем ЛЖ40.0 -130.0мл
20Фракция выброса ЛЖ55 — 75%
21Фракция укорочения ЛЖ20 -35%
22Масса миокарда ЛЖ90 — 150г
23Индекс массы миокарда100−128г/м2
24Толщина передней стенки ПЖ0.3 — 0.5см
25Диаметр выносящего тракта ПЖ1.0 — 3.0см

*Фракция выброса

*Сердечный выброс

расчеты в М-режиме по ( Teichholz , 1976)

КДО = 7,0/ (2,4 + кдр) х кдр3КСО = 7,0/ (2,4 + кср) х кср3УО (ударный объем) = кдо — ксоФВ (фракция выброса) = [(кдо — ксо) / кдо] х 100МО (минутный объем) = УО х ЧССМасса ЛЖ ( ASE) = 1,04 х (кдр + Тмжпд + Тзсд) 3 — кдр3Масса ЛЖ ( Penn ) = 0,8 х Масса ЛЖ ( ASE ) + 0,6ASE — рекомендации Американской ассоциации эхокардиографистов

Penn — рекомендации Пенсильванской конвенции

объем ПО p /4 [S (i = 1−20) (площадь по 2−х камерн. х площадь по 4−х камерн.) /( L / 20 )]

Методы для расчета КДО И КСО

Одноплановый ПО 

Биплановый ПО 

фракция выброса = (% укорочения по короткой оси) + (100% — % укорочения по короткой оси) — (разница данных ЛЖ в систолу и диастолу по длинной оси)

Допплерэхокардиографические расчеты

УДАРНЫЙ ОБЪЕМ = ИНТЕГРАЛ ЛИНЕЙНОЙ СКОРОСТИ Х ПЛОЩАДЬ ВЫНОСЯЩЕГО ТРАКТА ЛЖ

СЕРДЕЧНЫЙ ВЫБРОС = УДАРНЫЙ ОБЪЕМ х ЧСС (Л/МИН)

СЕРДЕЧНЫЙ ИНДЕКС = СЕРДЕЧНЫЙ ВЫБРОС / ПЛОЩАДЬ ПОВЕРХНОСТИ ТЕЛА (Л / МИН / М2)

Источник: http://www.medicus.ru/cardiology/specialist/azbuka-ehokardiografii-v-shemah-i-tablicah-23215.phtml

Узи сердца: расшифровка, норма

Диастолический объем

Если Вы уже проходили ультразвуковое исследование почек или, например, органов брюшной полости, то Вы помните, что для примерной расшифровки их результатов чаще всего не приходится обращаться к доктору – основную информацию можно узнать и до посещения врача, при самостоятельном прочтении заключения. Результаты УЗИ сердца не так просты для понимания, поэтому разгадать их бывает непросто, особенно если разбирать каждый показатель по циферке.

Можно, конечно, просто посмотреть на последние строки бланка, где написано общее резюме по исследованию, но это тоже не всегда проясняет ситуацию. Чтобы Вы лучше смогли разобраться в полученных результатах, приведем основные нормы УЗИ сердца и возможные патологические изменения, которые можно установить этим методом.

Нормы в УЗИ для камер сердца

Для начала приведем несколько цифр, которые обязательно встречаются в каждом заключении доплер-эхокардиографии. Они отражают различные параметры строения и функции отдельных камер сердца.

Если Вы – педант, и ответственно подходите к расшифровке своих данных, уделите этому разделу максимальное внимание. Пожалуй, здесь Вы встретите наиболее подробные сведения, в сравнении с другими интернет-источниками, предназначенными для широкого круга читателей.

В разных источниках данные могут несколько различаться; здесь приведены цифры по материалам пособия «Нормы в медицине» (Москва, 2001).

Параметры левого желудочка

Масса миокарда левого желудочка: мужчины – 135-182 г, женщины – 95-141 г.

Индекс массы миокарда левого желудочка (в бланке часто обозначается как ИММЛЖ): мужчины 71-94 г/м2, женщины 71-89 г/м2.

Конечно-диастолический объем (КДО) левого желудочка (объем желудочка, который он имеет в состоянии покоя) : мужчины – 112±27 (65-193) мл, женщины 89±20 (59-136) мл

Конечно-диастолический размер (КДР) левого желудочка (размер желудочка в сантиметрах, который он имеет в состоянии покоя): 4,6 – 5,7 см

Конечный систолический размер (КСР) левого желудочка (размер желудочка, который он имеет во время сокращения): 3,1 – 4,3 см

Толщина стенки в диастолу (вне сокращений сердца): 1,1 см

При гипертрофии – увеличении толщины стенки желудочка, обусловленной слишком большой нагрузкой на сердце – этот показатель увеличивается. Цифры 1,2 – 1,4 см говорят о незначительной гипертрофии, 1,4-1,6 – о средней, 1,6-2,0 – о значительной, и величина более 2 см свидетельствует о гипертрофии высокой степени.

Фракция выброса (ФВ): 55-60%.

В состоянии покоя желудочки наполняются кровью, которая не полностью выбрасывается из них во время сокращений (систолы).

Фракция выброса показывает, какой объем крови относительно ее общего количества выбрасывает сердце при каждом сокращении, в норме это чуть больше половины.

При снижении показателя ФВ говорят о сердечной недостаточности, это значит, что орган неэффективно перекачивает кровь, и она может застаиваться.

Ударный объем (количество крови, которое выбрасывается левым желудочком за одно сокращение): 60-100 мл.

Параметры правого желудочка

Толщина стенки: 5 мл

Индекс размера 0,75-1,25 см/м2

Диастолический размер (размер в покое) 0,95-2,05 см

Параметры межжелудочковой перегородки

Толщина в состоянии покоя (диастолическая толщина): 0,75-1,1 см

Экскурсия (перемещение из стороны в сторону во время сокращений сердца): 0,5-0,95 см. Увеличение этого показателя наблюдается, например, при некоторых пороках сердца.

Параметры правого предсердия

Для этой камеры сердца определяется лишь значение КДО – объема в состоянии покоя. Значение менее 20 мл говорит об уменьшении КДО, показатель больше 100 мл свидетельствует о его увеличении, а КДО более 300 мл бывает при очень значительном увеличении правого предсердия.

Параметры левого предсердия

Размер: 1,85-3,3 см

Индекс размера: 1,45 – 2,9 см/м2.

Скорее всего, даже очень подробное изучение параметров сердечных камер не даст Вам особенно четких ответов на вопрос о состоянии Вашего здоровья.

Вы просто сможете сравнить свои показатели с оптимальными и на этом основании сделать предварительные выводы о том, все ли у Вас в целом нормально.

За более подробной информацией обращайтесь к специалисту; для более широкого ее освещения объем этой статьи слишком мал.

Нормы в УЗИ для клапанов сердца

Что касается расшифровки результатов обследования клапанов, то она должна представлять более простую задачу. Вам будет достаточно взглянуть на общее заключение об их состоянии. Основных, самых частых патологических процессов всего два: это стеноз и недостаточность клапана.

Термином «стеноз» обозначается сужение отверстия клапана, при котором выше лежащая камера сердца с трудом прокачивает через него кровь и может подвергаться гипертрофии, о которой мы говорили в предыдущем разделе.

Недостаточность – это противоположное состояние. Если створки клапана, в норме препятствующие обратному току крови, по каким-то причинам перестают выполнять свои функции, кровь, прошедшая из одной камеры сердца в другую, частично возвращается обратно, снижая эффективность работы органа.

В зависимости от тяжести нарушений, стеноз и недостаточность могут быть 1,2 или 3 степени. Чем выше степень, тем серьезнее патология.

Иногда в заключении УЗИ сердца можно встретить такое определение, как «относительная недостаточность». При данном состоянии сам клапан остается нормальным, а нарушения кровотока возникают из-за того, что патологические изменения происходят в смежных камерах сердца.

Нормы в УЗИ для перикарда

Перикард, или околосердечная сумка – это «мешок», который окружает сердце снаружи. Он срастается с органом в области отхождения сосудов, в его верхней части, а между ним и самим сердцем имеется щелевидная полость.

Наиболее частая патология перикарда – это воспалительный процесс, или перикардит. При перикардите между околосердечной сумкой и сердцем могут формироваться спайки и накапливаться жидкость. В норме ее 10-30 мл, 100 мл говорит о небольшом накоплении, а свыше 500 – о значительном накоплении жидкости, что может приводить к затруднению полноценной работы сердца и его сдавливанию…

Чтобы освоить специальность кардиолога, человек вначале должен в течение 6 лет учиться в университете, а затем на протяжении минимум года отдельно изучать кардиологию.

Квалифицированный врач обладает всеми необходимыми знаниями, благодаря которым он сможет не только без труда расшифровать заключение к УЗИ сердца, но и поставить на его основании диагноз и назначить лечение.

По этой причине расшифровку результатов такого сложного исследования, как ЭХО-кардиография, следует предоставить профильному специалисту, а не пытаться сделать это самостоятельно, долго и безуспешно «ковыряясь» в цифрах и пытаясь понять, что означают те или иные показатели.

Это сэкономит Вам очень много времени и нервов, так как Вам не придется переживать по поводу своих, вероятно, неутешительных и, еще более вероятно, неправильных выводов о состоянии Вашего здоровья.

Источник: http://analizi-uzi.com/uzi-serdca-rasshifrovka-norma.html

20. Конечно-диастолический, конечно-систолический и ударный объемы левого желудочка, их величина. Понятие о фракции выброса, ее величина

Диастолический объем

Вфизиологии сердечнососудистойсистемы, конечныйдиастолический объём (КДО),это объём крови в правом и/или левомжелудочке в конечный момент наполнения(диастолы).

Так как КДО связан с растяжениемжелудочка(ков), КДО часто используетсякак синоним преднагрузки, то есть длинесаркомеров сердечной мышцы передсокращением (систолой).

Увеличение КДОувеличивает преднагрузку на сердце и,через механизмФранка-Старлинга сердца,повышает объём крови, вытолкнутой изжелудочка(ов) во время систолы (ударныйобъём сердца). Конечно-диастолическийобъем левого желудочка (КДО)–объем полостей левого желудочка в концедиастолы- 110-145 мл

Конечно-систолическийобъем левого желудочка (КСО)–объем полости ЛЖ в конце систолы- 40-65млУдарныйобъем- объем крови, изгоняемой в систолуза одно сокращение. УО=КДО-КСО (70-100 мл)

Фракциявыброса ЛЖ – отношение УО к КДО. Норма50 -70 %

21. Физиологические свойства сердца (автоматия, проводимость, сократимость, возбудимость)

Возбудимость- этоспособность миокарда возбуждаться придействии раздражителя, проводимость–проводить возбуждение,сократимость– укорачиваться при возбуждении. Особоесвойство – автоматия.Это способность сердца к самопроизвольнымреетмическим сокращениям, возникающихв самом органе.

Еще Аристотель писал,что в природе сердца имеется способностьбиться с самого начала жизни и до ееконца, не останавливаясь. В прошлом векесуществовало 3 основных теории автоматиисердца. Прохаска и Мюллер выдвинулинейрогенную теория, считая причинойего ритмических сокращений нервныеимпульсы.

Гаскелл и Энгельман предложилимиогенную теорию, согласно которойимпульсы возбуждения возникают в самойсердечной мышце. Существовала теориягормона сердца, который вырабатываетсяв нем и инициирует его сокращения.Автоматию сердца можно наблюдать наизолированном сердце по Штраубу.

В 1902году, применив такую методику Томскийпрофессор А.А.Кулябко впервые оживилчеловеческое сердце.

Автоматиясердца -это способность сердца ритмическисокращаться под влиянием импульсов,зарождающихся в нём самом.Возбудимостьсердца -это способность сердечной мышцывозбуждаться от различных раздражителейфизической или химической природы,сопровождающееся изменениями физико– химических свойств ткани.

Проводимостьсердца -осуществляется в сердце электрическимпутём вследствие образования потенциаладействия в клетках пейс-мейкерах. Местомперехода возбуждения с одной клетки надругую, служат нексусы.

Сократимостьсердца –Сила сокращения сердечной мышцы прямопропорциональна начальной длине мышечныхволокон

22. Условия, при которых проявляется свойство автоматии

Впрошлом веке существовало 3 основныхтеории автоматии сердца. Прохаска иМюллер выдвинули нейрогенную теория,считая причиной его ритмическихсокращений нервные импульсы.

Гаскелли Энгельман предложили миогенную теорию,согласно которой импульсы возбуждениявозникают в самой сердечной мышце.Существовала теория гормона сердца,который вырабатывается в нем и инициируетего сокращения. Автоматию сердца можнонаблюдать на изолированном сердце поШтраубу.

В 1902 году, применив такуюметодику Томский профессор А.А.Кулябковпервые оживил человеческое сердце.

23.

ОпытШтрауба:канюля через аорту проведена в желудочек,благодаря питательному раствору (Растворбыл назван в честь СиднеяРингера,который в 1882–1885 годах установил, что врастворе для перфузии сердца лягушкидолжны содержаться соли натрия, калияи кальция в определённой пропорции,чтобы сердце продолжало биться в течениедлительного времени) сердце может сокращаться в течениесуток.ОскарЛангендорфразработал первый препарат ex vivo поизучению изолированного сердцамлекопитающих в 1895 году. В качествеперфузионной жидкости (перфузата)использовалось дефибрилированная кровьживотных того же вида. В этом подходекоронарные сосуды перфузируются вобратном направлении (т.е. ретроградно)через аорту. Перфузии через коронарныесосуды было достаточно для обеспечениядлительных сердечных сокращений. Однако,вследствие того, что нормальные путициркуляции через желудочки незадействованы, эта модель не позволяетполучать физиологически значимые данныепо показателям “давление-объем”,которые наблюдаются в целостноморганизме. В целом, препарат Лангендорфаобеспечивает только общую информациюпо сердечной функции и дает данные,ограниченные динамикой в коронарныхартериях.24.Виды кардиомиоцитов, их физиологическаяхарактеристика

Миоцит– структурная единица мышечнойткани. Кардиомиоцит –это вид миоцитов, представляющий собойосновную структурно-функциональнуюединицу миокарда — миокардиальнуюклетку, ответственную за сократительнуюдеятельность миокарда.

Кардиомиоциты,исходя из их анатомического положения,делятся на предсердныекардиомиоциты и желудочковыекардиомиоциты.По своей функциональной деятельностикардиомиоциты делятся на рабочие(сократительные) кардиомиоциты,и проводящие(атипичные) кардиомиоциты.

Между рабочими и проводящими кардиомиоцитамирасположены переходныекардиомиоциты (Т-клетки),которые проводят импульсы от проводящихкардиомиоцитов к рабочим. В предсердияхнаходятся секреторныекардиомиоциты.

Выделяя специфический гормон(натрийуретический пептид) в предсердия,секреторные кардиомиоциты, такимобразом, принимают участие в регуляцииводно-электролитного баланса.

Рабочиекардиомиоциты(длина 100 мкм и диаметр – 15-20 мкм) выполняютосновную часть сократительной работысердца. Они составляют основную массумиокарда (95-99%).

В предсердно-желудочковойпроводящей системе рабочие кардиомиоцитыотвечают за генерацию и распространениевозбуждения, потенциалов действия помиокарду.

Рабочие кардиомиоцитыопределяют частоту сокращений сердцаи последовательность его возбуждения.

Проводящиекардиомиоцитынесколько больше и шире, клетки жеводителя ритма несколько тоньше обычных.Есть два вида проводящихкардиомиоцитов — Р-клетки иклеткиПуркинье.Генерируя электрические импульсы,Р-клетки обеспечивают так называемыйсердечный автоматизм (ритмическоесокращение сердца).

Кардиомиоцитыокружены обильной сетью капилляров.Клетки проводящей системы, помимокапилляров, окружены вегетативныминервными окончаниями. Близко расположенныеклетки соединяются друг с другом спомощью вставочных дисков. Кардиомиоцитокружает мембрана — сарколемма.

Всарколемме имеется множество складок,выпячиваний и карманов, поверх нееимеется дополнительное рыхлое покрытиетолщиной 50 нм, которое называетсягликокаликсом. Гликокаликс связан сприлегающими к клетке капиллярами иучаствует в обмене веществ междукапиллярами и клеткой. Кардиомиоцитысоединены между собой межмембраннымиконтактами — вставочными дисками.

С помощью этих контактов за счетзаполненных жидкостью каналовобеспечивается электрическоевзаимодействие между кардиомиоцитами.

Основнымкомпонентом кардиомиоцитов являютсямиофибриллы. Миофибриллы содержатсократительные и регуляторные белки.К сократительным относятся миозин иактин, к регуляторным — тропомиозини тропонин. Миозин образует толстыенити, или филаменты, актин — тонкие.

Эти филаменты расположены параллельнодруг другу, и каждая нить миозина окружена6 нитями актина. Каждая нить актина, всвою очередь, окружена 6 нитями миозина.Диаметр толстых филаментов около 14 нм,длина — 1 500 нм, они находятся нарасстоянии 20-30 нм друг от друга.

Тонкиефиламенты имеют диаметр примерно 7-8 нм.

Вкардиомиоците имеется 2 или более ядер.Они имеют веретенообразную форму ипродольное расположение. На поверхностиядра имеется много углублений. Помимоуказанных образований, в кардиомиоцитахимеются и другие структуры —пластинчатый комплекс, содержащийуглеводные и белковые остатки, липидныеобразования, гликоген и т. д.

25.Сравнительная характеристикаэлектрофизиологических особенностейрабочих и проводящих кардиомиоцитов,их ионные механизмы и значение.( 2варианта, если что то немного об этоместь в учебнике на стр 275)

за фазой реполяризации каждогопотенциала действия следует фазамедленной диастолической деполяризации.Фаза медленной диастолическойдеполяризации начинается сразу позавершении реполяризации и при достижениимаксимальногодиастолического потенциала.

Самопроизвольную медленную диастолическуюдеполяризацию называют также пейсмекернымпотенциалом клеток сердца,или предпотенциалом действия. Пейсмекерныйпотенциал снижается до критическогоуровня деполяризации, достигает его,что приводит к возникновению потенциаладействия.

Медленная диастолическаядеполяризация аналогична

локальному(местному) потенциалу.      

Спонтанная диастолическая деполяризация и автоматизмМембранный потенциал нормальных клеток рабочего миокарда предсердий и желудочков остается постоянным на уровне потенциала покоя в течение всей диастолы (см. рис. 3.1): если эти клетки не возбуждаются распространяющимся импульсом, то потенциал покоя в них поддерживается сколь угодно долго. В сердечных волокнах другого типа, например в специализированных волокнах предсердий или в волокнах Пуркинье проводящей системы желудочков, мембранный потенциал во время диастолы непостоянен и постепенно изменяется в сторону деполяризации. Если такое волокно не будет возбуждено распространяющимся импульсом раньше, чем мембранный потенциал достигнет порогового уровня, то в нем может возникнуть спонтанный потенциал действия (рис. 3.6). Изменение мембранного потенциала во время диастолы называется спонтанной диастолической деполяризацией, или фазой 4 деполяризации. Обусловливая возникновение потенциалов действия, этот механизм служит основой автоматизма. Автоматизм является нормальным свойством клеток синусового узла, мышечных волокон митрального и трикуспидального клапанов, некоторых участков предсердий, дистальной части АВ-узла, а также тканей системы Гиса — Пуркинье. В здоровом сердце частота возникновения импульсов вследствие автоматизма клеток синусового узла достаточно высока, что позволяет распространяющимся импульсам возбуждать другие потенциально автоматические клетки, прежде чем они спонтанно деполяризуются до порогового уровня. При этом потенциальная автоматическая активность других клеток обычно подавляется, хотя при целом ряде физиологических и патологических состояний она может проявляться (обсуждается ниже).

Источник: https://studfile.net/preview/6056707/page:4/

Показатели гемодинамики

Диастолический объем

Кровяное давление и сопротивление кровотоку — это фундаментальные гемодинамические факторы, которые определяют тканевое, органное и системное кровообращение. Оценку этих факторов используют для характеристики физиологического состояния сердечно-сосудистой системы.

Поток крови (Q) прямо пропорционален перепаду давления (ДР) и обратно пропорционален сопротивлению тока крови (R): Q – A P/R.

Например, минутный объем сердца, который является мерой потока крови от сердца, прямо пропорционален артериовенозной разнице давлений в системном кровотоке и обратно пропорционален общему периферическому сопротивлению сосудов.

Давление и потоки крови могут быть непосредственно измерены с помощью различных инструментов: аппарат Короткова позволяет определить системное артериальное давление, а катетеризация сосудов или камер сердца – кровяное давление и объемную скорость кровотока.

Кроме того, общее периферическое сосудистое сопротивление может быть вычислено на основании данных об объеме сердечного выброса, среднем уровне артериального давления и уровне системного венозного давления (см.ниже). Основные гемодинамические показатели и их значения представлены в таблице.

Таблица – Гемодинамические показатели сердечно-сосудистой системы

Показатели  Сокращенные  обозначения  показателейНормальные значения
Ударный объемУО60,0—100,0 мл
Сердечный выброс(син.: минутный объем сердца)СВ (МОС)4,0—6,0 л/мин
Сердечный индексСИ2,5—3,6 л/мин/м2
Фракция выбросаФВ55-75%
Центральное венозное давлениеЦВД40—120 мм вод. ст
Диастолическое давление в легочной артерииДДЛА9—16 мм рт.ст.
Давление в левом предсердииДЛП1-10 мм рт.ст.
Давление заклинивания легочной артерииДЗЛА6—12 мм рт.ст.
Диастолическое давление в аортеДДА70—80 мм рт.ст.
Системное артериальное давление: Артериальное давление систолическое Артериальное давление диастолическоеСАДАД систол.АД диаст.100—139 мм рт.ст.60—89 мм рт.ст.
Артериальное давление (среднее)АД средн.70—105 мм рт.ст.
Общее периферическое сосудистое сопротивлениеОПСС1200—1600 дин-с-см-5
Легочное сосудистое сопротивлениеЛСС30—100 дин-с-см’5
 Показатель сократимости миокарда (определяется в фазу изоволюмического сокращения) dp/dt макс мм рт.ст./с
 Показатель расслабляемости миокарда (определяется в фазу изоволюмического расслабления) dp/dt макс мм рт.ст./с
 Частота сердечных сокращений ЧСС 60—70 уд. /мин (муж.);70—80 уд./мин (жен.)

Ударный объем

Ударный объем (УО) — это объем крови, поступающий в аорту во время одной систолы (одного цикла сокращения) левого желудочка. УО представляет собой разницу между конечно- диастолическим объемом (КДО) и конечно-систолическим объемом (КСО) крови в левом желудочке: УО = (КДО – КСО) мл.

Сердечный выброс

Сердечный выброс (СВ) (наряду с СВ нередко используют понятие «минутный объем сердца» — МОС).

Если наполнение желудочков поддерживается на достаточном уровне, то величина сердечного выброса при любом ударном объеме зависит от частоты сердечных сокращений (ЧСС). Формула расчета: СВ или МОС= (УО • ЧСС) л/мин.

Таким образом, СВ является функцией УО и ЧСС. Увеличение СВ при тахикардии требует более эффективного диастолического наполнения сердца.

При увеличении частоты сердечных сокращений относительное время диастолы уменьшается по сравнению с продолжительностью систолы. Однако в нормально функционирующем сердце, которое сокращается в пределах 170 уд/мин, его наполнение не уменьшается в связи с укорочением диастолы.

В интактном сердце при тахикардии процесс расслабления сердечной мышцы ускоряется, что обеспечивает более быстрое и полное наполнение сердца кровью в течение укороченных диастолических периодов.

Этот эффект частично опосредуется через стимуляцию p-рецепторов катехоламинами, которые повышают релаксацию кардиомиоцитов за счет ускоренного удаления из них внутриклеточного Са2+.

При чрезмерной тахикардии (более 170 уд/мин) подобная полная диастолическая релаксация может не произойти, а следовательно и дальнейшее увеличение СВ.

Сердечный индекс

Сердечный индекс (СИ).

В современной медицине показатель СВ нормализован с целью придания ему свойства сравнимости, необходимого для сопоставления результатов его измерения у разных индивидумов и в различных условиях функционирования сердца. Нормализованный показатель был назван «сердечный индекс», т.е. СИ — это расчетный показатель, размер которого у здоровых людей зависит от пола, возраста, массы тела.

Нормализация заключается в учете (нивелировании) влияния индивидуальных данных, биологических особенностей конкретного человека. Интегративным критерием таких особенностей была выбрана площадь поверхности тела (м2) обследуемого индивидума.

Отсюда формула для расчета: СИ= СВ/ площадь тела (л/мин/м2), т. е. размерность СИ выражается в литрах в минуту из расчета на единицу площади поверхности тела (м2). Для расчета площади поверхности тела используют номограмму и целый ряд формул.

Среди них, например, формула Дюбуа:

S = В0,423 х Р0-725 х 0,007184,

где S — площадь поверхности тела, м2; В — масса тела, кг; Р — рост, см; 0,007184 — постоянный коэффициент.

По существу СИ представляет собой меру потока крови из сердца и в этом качестве является основным показателем его насосной функции. У здорового человека в состоянии покоя индекс считается нормальным в пределах 2,5— 3,6 л/мин/м2. Уменьшение возможностей сердца выполнять свою насосную функцию при различных формах патологии ведет к снижению СИ.

Таким образом, показатель СИ более адекватно, чем СВ, характеризирует гемодинамические возможности конкретного (а не некого виртуального) здорового организма и в условиях развития сердечной недостаточности. Именно этот показатель используют для объективной оценки степени ее выраженности. В этом качестве СИ является одним из основных классификационных критериев сердечной недостаточности.

Фракция выброса (ФВ)

Этот показатель характеризует степень эффективности работы сердца во время систолы. В основном принято измерять ФВ левого желудочка — основного компонента сердечного насоса.

ФВ выражают в виде процента УО от объема крови в желудочке при максимальном его наполнении во время диастолы.

Например, если в левом желудочке находилось 100 мл, а во время систолы в аорту поступило 60 мл крови, то ФВ равняется 60%.

Как правило, ФВ вычисляют по формуле:

ФВ = (КДО – КСО) / КДО х 100 (%),

где КДО — конечный диастолический объем, КСО — конечный систолический объем.

Наряду с расчетом ФВ используют аппаратные методы ее определения: эхокардиографию, рентгеноконтрастную или изотопную вентрикулографию.

Нормальное значение ФВ левого желудочка равно 55—75%. С возрастом имеется тенденция к снижению данного показателя. Принято считать, что величина ФВ ниже 45—50% свидетельствует о недостаточности насосной функции сердца.

Показатель ФВ при различных сердечно-сосудистых заболеваниях не только диагностически, но и прогностически значим. Однако он имеет определенные ограничения, т.к. зависит от сократимости миокарда и от других факторов (пред-, постнагрузки, частоты и ритмичности сердечных сокращений).

Давление заклинивания легочной артерии (ДЗЛА)

Для объективной оценки насосной функции левого сердца необходимо измерять кровяное давление в системе легочных вен — при левожелудочковой недостаточности оно повышается.

Однако катетеризация легочных вен достаточно сложная процедура и включает ретроградное (против тока крови) проведение катетера из какой-либо периферической артерии (например, бедренной артерии) в аорту, затем в левый желудочек, левое предсердие и наконец через митральное отверстие в легочную вену.

Выполнение такого диагностического маневра чревато различными осложнениями — перфорацией сосудов, самозавязыванием катетера в узел, внесением «катетерной» инфекции, аритмиями, тромбообразова-нием и др., поэтому с целью определения уровня кровяного давления в легочных венах решено проводить катетеризацию не легочных вен, а легочной артерии.

Это более простая и безопасная процедура для оценки насосной функции левого сердца. При ее проведении используют т. н. плавающий катетер Свана—Ганца (Swan Н., Ganz W.), на конце которого расположен небольшой баллончик, раздуваемый воздухом или изотоническим раствором натрия хлорида.

Вначале катетер проводят в верхнюю полую вену, используя технику катетеризации подключичной и внутренней яремной вен. После попадания катетера в правое предсердие баллончик немного раздувают.

При этом катетер приобретает повышенную «плавучесть» и подобно лодочке под парусом практически самостоятельно током крови заносится в легочную артерию.

Затем воздух (или изотонический раствор натрия хлорида) из баллончика выпускают и продвигают конец катетера в одно из разветвлений легочной артерии II и III порядка до упора, т. е. до капиллярной сети.

После этого вновь раздувают баллончик, обтурируя («заклинивая») сосуд, что позволяет зарегистрировать так наз. легочно-капиллярное давление или, точнее, давление, передаваемое через систему легочных вен и капилляров из левого предсердия в катетер.

Измеряемое при этом давление получило название «давление заклинивания легочной артерии» (ДЗЛА). На всех этапах продвижения катетера (правое предсердие, правый желудочек, легочная артерия и ее бифуркации) контролируют изменения кровяного давления с помощью этого же катетера для отслеживания его местонахождения.

ДЗЛА является одним из основных гемодинамических показателей насосной функции сердца, который, за некоторым исключением, фактически всегда соответствует давлению в левом предсердии и конечно-диастолическому давлению в левом желудочке, отражая, таким образом, состояние легочного капиллярного кровообращения и риск развития кардиогенного отека легких у пациентов с левожелудочковой недостаточностью.

Центральное венозное давление (ЦВД)

это давление крови в правом предсердии; показатель отражает преднагрузку правого сердца (желудочка).

Ее величина зависит от объема крови, поступающей в правое сердце (чем больше возврат крови в сердце,тем выше ЦВД), и насосной функции правого сердца.

ЦВД прежде всего отражает способность правого желудочка перекачивать весь объем поступающей в него крови, поэтому оно является объективным критерием насосной функции правого сердца.

При правожелудочковой недостаточности ЦВД повышается. Показатель ЦВД используют также для оценки объема циркулирующей крови. При этом необходимо учитывать способность венозной системы активно уменьшать свою емкость под воздействием факторов, регулирующих тонус венозных сосудов.

В условиях развития гиповолемических состояний их компенсаторный спазм может скрывать уменьшение ОЦК и соответственно снижение ЦВД. Известно, что быстрое уменьшение ОЦК на 10%, как правило, не сопровождается падением ЦВД. ЦВД измеряют в правом сердце с помощью катетера, снабженного манометром.

При горизонтальном положении тела нормальный уровень ЦВД находится в пределах 40—120 мм вод. ст. В условиях развития экстремальных состояний организма уровень ЦВД обычно непрерывно контролируется, т.к. ЦВД имеет исключительную ценность в дифференциальной диагностике шоковых состояний, инфарктов миокарда, сердечной недостаточности, выраженных кровопотерь и т.п.

Системное артериальное давление (АД систем.)

Системное артериальное давление (АД систем.) является функцией сердечного выброса (СВ) и общего периферического сопротивления сосудов (ОПСС):

АД систем. — f (СВ, ОПСС),

где f — функция (математическое понятие, отражающее связь между элементами множества).

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Артериальное давление систолическое

Артериальное давление систолическое (АД систол.), определяемое в период систолы левого желудочка сердца, отражает минутный объем сердца: МОС = f (ударный объем сердца, частота/ритм/сила сокращений сердца, объем циркулирующей крови);

Артериальное давление диастолическое

Артериальное давление диастолическое (АД диастол.), измеряемое в период диастолы левого желудочка, отражает общее периферическое сопротивление сосудов (ОПСС): ОПСС = f (диаметр [тонус] резистивных сосудов, реологические свойства крови);

Пульсовое артериальное давление

Пульсовое артериальное давление (АД пульс.) представляет собой (в первом приближении) разницу между уровнями систолического и диастолического давлений.

Артериальное давление среднее

Артериальное давление среднее (АД средн.) — в упрощенном варианте представляет собой среднее арифметическое между уровнями систолического и диастолического давлений. Существует ряд способов расчета уровня АД среди.:

1) АД средн. = (АД систол, х Т систол. + АД диастол, х Т диаст.) / Т серд. цикла, где Т — длительность систолы, диастолы или сердечного цикла;

2) АД средн. = АД диаст. + 1/3 АД пульс, (формула Хикема);

3) АД средн. = АД диаст. + 0,427 х АД пульс, (формула Вецлера и Богера; считают наиболее точной для расчета АД среда.);

Системное венозное давление (ВД средн.) принято приравнивать к среднему давлению в правом предсердии.

Общее периферическое сосудистое сопротивление (ОПСС). Этот показатель отражает суммарное сопротивление прекапиллярного русла и зависит как от сосудистого тонуса, так и от вязкости крови. На величину ОПСС влияет характер ветвления сосудов и их длина, поэтому обычно чем больше масса тела, тем меньше ОПСС.

В cвязи с тем, что для выражения ОПСС в абсолютных единицах требуется перевод давления мм рт. ст. в дин/см2, формула для расчета выглядит следующим образом:

ОПСС = (АД систем, х 80) / СВ [дин хсх см-5]; 80 – константа для перевода в метрическую систему.

(3 votes, average: 3,67 5)
Загрузка…

Источник: https://cardio-bolezni.ru/pokazateli-gemodinamiki/

ЭхоКГ глобальной систолической функции левого желудочка

Диастолический объем

а) Объемы и фракция выброса. Вероятно, самой частой задачей, стоящей перед эхокардиографическим исследованием, является оценка «функции левого желудочка». При этом понятие «функция» имеет несколько значений.

Прежде всего, оно описывает глобальную насосную функцию как способность поддерживать минутный объем, соответствующий потребностям организма.

Для этого сердце должно выбрасывать достаточный ударный объем (= разница между конечным диастолическим и конечным систолическим объемом).

1. Фракция выброса. Классическим параметром этой «систолической насосной функции» является фракция выброса (ФВ):

ФВ = (КДО ЛЖ – КСО ЛЖ) / КДО ЛЖ,

где КДО ЛЖ обозначает конечный диастолический, а КСО ЛЖ – конечный систолический объем левого желудочка.

Методики расчета объемов и фракции выброса: двухплоскостная методика дисков (вверху) и одноплоскостная методика «площадь-длина» (внизу). Укорочение полости левого желудочка из-за слишком высокого расположения плоскости исследования и усечения верхушки.

2. Объемы. Абсолютные величины объемов дополнительно могут быть критериями, свидетельствующими о:

– увеличении преднагрузки, особенно о наличии нагрузки объемом или проявлении закона Франка-Старлинга при сердечной недостаточности (повышение КДО);

– увеличении постнагрузки или снижении сократимости миокарда (повышение КСО).

Объемы левого желудочка можно определять различными эхокардиографическими методиками.

От определения объемов на основании измеренных в М-режиме диаметров (что во многих аппаратах происходит при помощи встроенной «формулы Тейхольца») настоятельно рекомендуется отказаться, поскольку как раз там, где это важнее всего (а именно у пациентов со снижением функции левого желудочка на фоне КБС), она может приводить к совершенно ошибочным результатам, так как опирается исключительно на диаметр желудочка в базальной области. В то же время как двумерная, так и, в особенной степени, трехмерная ЭхоКГ позволяет надежно рассчитывать объемы и фракцию выброса.

3. Метод дисков. Эхокардиографические сообщества рекомендуют использовать метод дисков («модифицированный метод Симпсона»), опирающийся как на одноплоскостное (апикальная четырехкамерная позиция), так и на двухплоскостное (апикальная четырех- и двухкамерная позиции) исследование. Как правило, производится деление на 20 «дисков».

При определении этого важнейшего кардиологического параметра возникают следующие типичные проблемы:

– В четырехкамерной позиции часто «срезается» верхушка и, тем самым, вычисляются объемы меньше истинных.

Поэтому необходимо следить за тем, чтобы для определения объемов датчик устанавливался в самое нижнее межреберье, где еще можно получить четырехкамерное изображение.

Следует отметить, что эта ошибка менее значима для расчета фракции выброса, поскольку уменьшению подвергается как систолический, так и диастолический объем.

– Наихудшая видимость контура эндокарда в апикальной четырехкамерной позиции отмечается в верхушечно-боковой области, а в двухкамерной позиции – в передневерхушечной. Улучшения визуализации контура эндокарда можно добиться при использовании высокочастотных датчиков, режима гармонического изображения или контрастных средств для левых отделов сердца.

4. Метод «площадь-длина». При худшем контурировании эндокарда в области верхушки можно воспользоваться методом «площадь-длина», основанным на площади желудочка на уровне папиллярных мышц в парастернальном сечении по короткой оси (А) и размере длинной оси левого желудочка от плоскости митрального кольца до верхушки в четырехкамерной позиции (L):

Объем = 5•А•L/6.

Об измерении объемов при помощи трехмерной ЭхоКГ см. статьи по трехмерной эхокардиографии на этом сайте.

5. Пороки сердца с регургитацией. Объемы желудочка зависят как от пред- и постнагрузки, так и от сократимости миокарда. Поэтому часто нельзя судить о сократимости миокарда по одному только параметру фракции выброса. Особенно это справедливо для пациентов с клапанной регургитацией.

Тогда как конечный систолический объем определяется в первую очередь сократимостью и постнагрузкой, конечный диастолический объем сильно зависит от преднагрузки. Как аортальная, так и митральная недостаточность могут существенно влиять на все эти 3 фактора.

На практике для оценки функции левого желудочка у пациентов с клапанной регургитацией наряду с фракцией выброса преимущественно используется показатель конечного систолического объема (или конечного систолического размера ЛЖ), в меньшей степени зависящий от объема регургитации, чем конечный диастолический объем; при этом повышение КСР (например, более 45 мм при митральной недостаточности и более 50 мм – при аортальной) расценивается как признак начинающейся дисфункции миокарда.

б) Циркулярная фракция укорочения. К важнейшим классическим «линейным» параметрам функции желудочка относится циркулярная фракция укорочения:

V = (КДР ЛЖ – КСР ЛЖ)/КДР ЛЖ,

где КДР ЛЖ обозначает конечный диастолический, а КСР – конечный систолический размер левого желудочка (в М-режиме или в парастернальном доступе по длинной оси). Конечно, такой «одномерный» параметр может лишь в том случае служить критерием оценки глобальной функции, если не имеется существенных региональных нарушений сократимости.

Было показано, что в случае наличия значительной гипертрофии стенки более качественную оценку сократимости миокарда дает расчет фракции укорочения воображаемой плоскости миокардиальных волокон в середине толщины стенки желудочка (midwall fractional shortening, MWFS – фракция укорочения средних слоев), чем вышеописанная классическая фракция укорочения. Но ее расчет более сложен:

MWFS = (КСРЛЖ + ВП) * 100 / (КДР ЛЖ + ТМЖП/2 + ТЗСЛЖ/2),

причем

ВП = [(КДР ЛЖ + ТМЖП/2 + ТЗСЛЖ/2)3 -КДР ЛЖ3 + КСР ЛЖ3]1/3 – КСР ЛЖ,

где ТМЖП – толщина межжелудочковой перегородки, ТЗСЛЖ – толщина задней стенки левого желудочка, ВП – внутренняя поверхность.

Расчет скорости нарастания давления в левом желудочке dp/dt на основании непрерывноволнового допплеровского сигнала из области митральной регургитации. В приведенном примере dp/dt находится на уровне 701 мм рт.ст./с, что существенно ниже нормы (>1000 мм рт.ст./с). Схематическое изображение расчета индекса глобальной функции желудочка («myocardial performance index», MPI, индекс Tei) на основании профиля входящего митрального и выходящего аортального потока, а также их взаимосвязь с физиологическими интервалами. ICT -время изоволюмического сокращения, IRT – время изоволюмического расслабления, ЕТ – время изгнания. На практике достаточно измерить лишь интервал между двумя профилями митрального входящего потока (а) и время изгнания (b).

в) Вычисление скоростей нарастания и снижения давления в левом желудочке (dp/dt).

Профиль митральной регургитации, регистрируемый в режиме непрерывноволновой спектральной допплерографии, позволяет приближенно оценить скорости раннесистолического нарастания давления и позднесистолического снижения давления в левом желудочке.

Для этого, как правило, используется временной интервал между точкой максимальной моментной скорости регургитации 1 м/с (соответствует желудочковопредсердному градиенту давлений на уровне 4 мм рт.ст.

) и точкой максимальной моментной скорости регургитации 3 м/с (соответствует желудочково-предсердному градиенту давлений на уровне 36 мм рт.ст.). Коэффициент «(36 мм рт.ст. – 4 мм рт.ст.

)/длительность интервала» отражает скорость раннесистолического нарастания давления и, соответственно, позднесистолического снижения давления в левом желудочке, что хорошо коррелирует с максимальным показателем dp/dt. Следует помнить, что расчет строится не на истинном давлении в желудочке, а на градиенте давлений между левым желудочком и левым предсердием, и кроме того, рассчитанный показатель dp/dt не обязательно соответствует максимальному dp/dt. Однако при помощи этой методики можно произвести приближенную оценку положительного и отрицательного экстремумов кривой dp/dt.

г) Индекс Tei (myocardial performance index, индекс глобальной функции желудочка*). *В отечественной литературе также встречается обозначение этого индекса как «систолодиастолического индекса миокарда».

Этот индекс, предложенный С.Tei, является попыткой количественной оценки систолической и диастолической функции левого желудочка на основании технически несложных измерений.

Допплеровский сигнал трансмитрального входящего потока и трансаортального выходящего используется для определения интервала от конца входящего митрального потока первого сердечного цикла до начала входящего митрального потока следующего цикла, а также для определения длительности фазы изгнания. Расчет индекса показан на рисунке ниже.

Заболевания миокарда, особенно КБС, обычно приводят к увеличению как времени изоволюмического сокращения, так и времени изоволюмического расслабления, что отражается в нарастании этого безразмерного индекса, в норме не превышающего 0,49.

Хотя была показана диагностическая и прогностическая ценность этого показателя как раз при легких степенях сердечной недостаточности, но индекс имеет ограничения, аналогичные ограничениям, известным для положенных в его основу систолических интервалов (особенно зависимость от пред- и постнагрузки), что делает его похожим на параметр IVRT (время изоволюмического расслабления).

Тканевая допплерография базальных отделов перегородки из апикального доступа. Слева – нормальная скорость Е' в нормальном желудочке, справа – сниженная скорость Е' в желудочке с выраженной дисфункцией.

д) Параметры тканевой допплерографии. Тканевая допплерография позволяет получить важные и клинически значимые параметры для оценки глобальной систолической функции. Во время систолы наряду с укорочением поперечника (в норме примерно на 25%), т.е.

«циркулярным» сокращением левого желудочка, происходит также в процентном отношении менее значительное (около 12%) продольное укорочение длинной оси, причем преимущественно за счет базальных двух третей этой оси.

Такое укорочение придает левому желудочку в конце систолы конусовидную форму, менее округлую, чем в конце диастолы.

Уже давно было отмечено, что продольное укорочение, распознаваемое по смещению митрального кольца в сторону верхушки, вносит важный вклад в изгнание крови, что не учитывается при классическом анализе поперечника желудочка, например, на основании показателя фракции укорочения.

Было показано, что амплитуда и скорость движения митрального кольца позволяют хорошо оценить фракцию выброса левого желудочка, причем как раз в том случае, когда верхушка плохо визуализируется. Нормальное значение находится в диапазоне 12±2 мм.

Измерение скорости продольного движения митрального кольца (максимальной в области базального бокового сегмента) при помощи тканевой допплерографии, наряду с определением пиковой систолической скорости (S), позволяет оценить глобальное систолическое укорочение, прежде всего означенной стенки, но также и всего желудочка (см. также статьи по эхокардиографической оценке тканей на данном сайте), В то время как скорости движения базальных сегментов (благодаря физической непрерывности зон миокарда) позволяют оценивать глобальную функцию желудочка, измерение параметров деформации (strain и strain rate) вносит вклад в количественную оценку региональной деформации.

е) Минутный объем. Относительно простая возможность оценки насосной функции заключается в расчете ударного объема: это произведение интеграла линейной скорости движения крови в выносящем тракте левого желудочка или в области клапана легочной артерии, вычисляемого на основании импульсно-волнового допплеровского исследования, и площади поперечного сечения соответствующей зоны.

– Также рекомендуем “ЭхоКГ региональной систолической функции левого желудочка”

Редактор: Искандер Милевски. 26.12.2019

Оглавление темы “ЭхоКГ левого желудочка.”:

Источник: https://meduniver.com/Medical/cardiologia/exokg_globalnoi_sistolicheskoi_funkcii.html

МедСостав
Добавить комментарий